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A proof is o!ered for the equivalence of the group velocity and the energy velocity for
elastic waves in a free anisotropic homogenous plate. The proof is valid in the case where the
group velocity may be negative while the wave number is positive.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

The equivalence of the energy velocity and the group velocity is often taught in university
physics. An early proof of the equivalence of the two velocities for one-dimensional water
waves was given by Rayleigh [1]. In the 1950s and 1960s many studies [2}4] were done to
show the equivalence of the two velocities for more general systems. Later, in the 1990s,
Awati and Howes raised a question asking for a general proof of the relationship between
the group velocity and the energy velocity, and a number of people [5}8] responded to
their question. However, several cases need particular considerations. There are some
researchers who tried to show that the energy velocity and the group velocity are not equal
for acoustic waves in piezoelectrics, but their result was proved to be incorrect later [9].
Another ambiguous case is that of the backward waves where the group velocity is negative
while the wave number is positive [10}12]; in other words, the group velocity and the wave
number have opposite signs. Some people believe that when the group velocity is negative, it
is not equal to the energy velocity [13].
Tolstoy and Usdin [10] studying the Rayleigh}Lamb dispersion equation in 1957,

numerically found that the group velocity may be negative for some modes of wave
propagation in a plate. Meitzler [11] in 1965 reported an experimental result showing the
existence of the mode for which the group velocity could be negative in a plate. In a recent
study, photo-elastic pictures of wave modes where there may exist negative group velocity
were presented [12]. People who believe that the energy and group velocities are equivalent
interpret this phenomenon in such a way that the group velocity should be positive and the
wave number should be negative. By the 1970s, a proof was o!ered by Achenbach [14] for
the equivalence of the two velocities for wave in a plate under a simple assumption that the
amplitude of the wave is independent of frequency � and wave number k along a branch of
the frequency spectrum. However, his proof is not valid for the backward waves.
In this paper, a general proof is presented to show the equivalence of the energy velocity

and the group velocity for waves in an anisotropic homogenous plate and it is valid for the
backward waves. The expressions for both the energy velocity and the group velocity are
obtained in terms of the Lagrangian density.
022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.
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2. LAGRANGIAN DENSITY

For acoustic waves in an anisotropic plate, the expression of Lagrangian density is given
by
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where u
�
is a displacement component of a particle, � is the mass density, and C

����
is the

tensor of the elastic constants. The dot above the "rst term on the right side denotes
the partial derivative with respect to time, the subscript comma of the second term
represents the partial derivative with respect to position and any subscript takes values 1, 2,
3. The convention of a repeated alphabetic subscript in a term is used for summation. The
"rst term and the second term on the right-hand side of equation (1) correspond to the
kinetic energy and the deformation energy density respectively.
In order to show the equivalence of the energy velocity and the group velocity, the two

volocities are expressed in terms of the Lagrangian density. For this purpose, we need some
relations. First, the wave "eld must satisfy the equations of motion and the boundary
conditions of free surfaces. Using Lagrangian density (1) and applying the theorem of
variation calculation to Hamilton's principle [15], we obtain the equations of motion given
by
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Assuming that the plate is perpendicular to x
�
direction and that the surfaces are at

x
�
"$h, we have the traction-free conditions on the surfaces of a plate given by
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When the wave in a waveguide is a combination of longitudinal waves and transverse waves
which is the case of the backward waves, the amplitude of waves depends on the frequency
� or the wavenumber components k

�
. Here we consider the displacement "eld in the general

form
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where �"�t!k
�
x
�
, j"1, 2 is a phase function. Furthermore, we assume that u

�
and its

derivatives are all continuous periodic functions in �with a period P. The components u
�
are

not necessary in phase. Equation (4) gives solutions of equations (2) and (3) only if the
dispersion equation is also satis"ed. An important relation is the generalized dispersion
equation in the form of the vanishing of the mean Lagrangian density.

3. GENERALIZED DISPERSION EQUATION

We are interested in a linear homogeneous and conservative lossless system. For such
a system, a wave "eld is usually of periodicity or is a superposition of periodic wave. A linear
periodic dynamic system that obeys Hamilton's principle has an important property that
the mean time}space Lagrangian density is zero. This property is obvious for a classical
system such as a harmonic oscillator. The vanishing of the mean Lagrangian density is the
key to our method so for certainty we shall show that for acoustic waves in a plate the mean
Lagrangian density is zero. The averaged Lagrangian density over time and space can be
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expressed as
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First, it is easy to show that the "rst variation �D vanishes if �u
�
has the same periodicity as

u
�
itself even if �u

�
does not vanish at the boundary. The "rst variation �D is given by
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As usual, this "rst variation can be rewritten in an alternative form by the commutation
property of variation and di!erentiation. We have
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The "rst mean integration term vanishes because of the equations of motion, and the second
term is zero if �u

�
has the same periodicity as u

�
and if the boundary conditions are satis"ed.

Therefore, the "rst variation of the mean Lagrangian density is zero.
Second, we use the direct de"nition of the variation. For simplicity, we write the mean

Lagrangian density as a function of u
�

D"D[u
�
] , (8)

so that the variation can be given as

�D"D[uN
�
]!D[u

�
] , (9)

where uN
�
"u

�
#�u

�
is an arbitrarily varying function. If we assume that �u
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an arbitrary parameter, since D is homogeneous and quadratic in the derivatives of u
�
, the

varied mean Lagrangian density can be given by
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and equation (9) becomes
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Since �u
�
has the same properties as u

�
itself, the variation is zero as we have shown. Thus for

any non-zero parameter � the mean Lagrangian density must be zero:
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Equation (12) gives a relationship between the frequency and the wave number components
and is often called dispersion equation. Here we should emphasize that the frequency and
the wave number components in the phase function � make no contribution to the
dispersion equation since the average is performed over time and space. Equation (12)
determines the frequency � as an implicit function of wave numbers k

�
, i"1, 2.

4. THE CONCEPTS OF ENERGY VELOCITY AND GROUP VELOCITY

The expression of the energy velocity can be given by
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where F is the energy #ux vector and E is the energy density. It is obvious that the energy
velocity is of the dimension of velocity, and that it is a vector due to the energy #ux vector.
For a wave system speci"ed by the Lagrangian density (1), the component of the energy
velocity can be given by
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where in the denominator we have used the result that the mean Lagrangian density
is zero.
The group velocity is also a velocity vector. The component of a group velocity

is de"ned as the rate of change of frequency with the corresponding component of wave
number
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5. THE PROOF

Now we shall express the group velocity in terms of the Lagrangian density. We can
express the components of the group velocity by the implicit di!erentiation from the
generalized dispersion equation (12) as
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Let us examine the partial derivative of D with respect to explicit �. We can change the
order of the di!erentiation and the integration with respect to � by the continuity of the
functions since � can be regarded as independent variables and is continuous in � and
k
�
, i"1, 2. Thus, the derivative of D with respect to explicit � becomes

�D
��

"��¸

�uR
�

�uR
�

��
#

�¸

�u
�� �

�u
���

�� � . (17)

Since we have the expressions
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substituting equation (18) into equation (17) and carrying out a transform we obtain
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It is easy to see that the second term vanishes by the equations of motion; in the third term,
the mean integrals with respect to t and with respect to x

�
, i"1, 2, vanish because of the

periodicity and the mean integral with respect to co-ordinate x
�
vanishes by the boundary
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conditions. Thus, the derivative of D with respect to explicit � becomes
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From similar arguments, it can be shown that the partial derivative of D with respect to
explicit k

�
, j"1, 2, is given by
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Therefore, the components of the group velocity in equation (16) can be expressed as
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Comparison of equation (22) and the energy velocity (14) gives the required result.

6. DISCUSSION

The backward wave phenomenon has been found not only for elastic waves but also for
electromagnetic waves [16]. The method used in this paper can be easily applied to
electromagnetic waves as long as the wave is linear. For a linear electromagnetic wave, the
electrical "eld strength and the magnetic induction can be derived from a scalar potential
and a vector potential. The Lagrangian density of electromagnetic "eld in terms of the
scalar and vector potentials is homogeneous and quadratic [17] so that the mean
Lagrangian density can be easily shown to be zero by using the approach given in section 3,
which gives a generalized dispersion equation. The expression of the group velocity derived
from the generalized dispersion equation can be shown to be the same as that of the energy
velocity.
So far, the conditions for the existence of a backward wave are still not very clear in

general cases and physical understanding of backward waves remains to be clari"ed. It is
hoped that this paper will encourage further studies on the backward waves.
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